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In a recent paper, we described the 
localization of cryptochrome 1a in 

the retina of domestic chickens, Gallus 
gallus, and European robins, Erithacus 
rubecula: Cryptochrome 1a was found 
exclusively along the membranes of the 
disks in the outer segments of the UV/
violet single cones. Cryptochrome has 
been suggested to act as receptor molecule 
for the avian magnetic compass, which 
would mean that the UV/V cones have 
a double function: they mediate vision in 
the short-wavelength range and, at the 
same time, magnetic directional infor-
mation. This has important implica-
tions and raises a number of questions, 
in particular, how the two types of input 
are separated. Here, we point out several 
possibilities how this could be achieved.

Radical Pair Processes Underlie 
the Avian Magnetic Compass

A ‘magnetic compass’ is widespread among 
birds—it has been demonstrated in numer-
ous species of passerines,1 but also in hom-
ing pigeons2 and domestic chickens.3 The 
respective directional information in birds 
is mediated by radical pair processes4-8 
in the eye.9-11 Cryptochrome, a blue light 
absorbing pigment, has been suggested 
as receptor molecule,4 because it is the 
only photopigment known to occur in 
animals that has the required properties. 
Cryptochrome had been found in the eyes 
of birds12-15 (reviewed in ref. 16), but its pre-
cise location in the retina was not known.

In our recent paper,17 we have demon-
strated Cry1a at the disk membranes in the 
outer segment of the UV/V single cones. 
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Association with the membranes means 
that the various Cry1a molecules within 
one receptor cell are probably arranged to 
act as a unit, and the rather even distribu-
tion of the UV/V single cones across the 
entire hemispherically-shaped retina17,18 
indicates that these receptor cells could 
be oriented in the various spatial direc-
tions. Hence the yields of the radical pair 
processes can form a specific magneti-
cally-induced pattern on the retina that 
is centrally symmetric with respect to the 
magnetic vector, allowing birds to obtain 
directional information. In short, the 
arrangement of Cry1a in the UV/V cones 
appears to fulfil the requirements of the 
Radical Pair model,4 which supports the 
idea that Cry1a is the receptor molecule 
for the avian magnetic compass.

Why is Cry1a Expressed  
in the UV/V Cones?

We found Cry1a exclusively expressed in 
the UV/V cones—why is it not located 
in one of the other spectral cone types or 
in the rods? In birds, the UV/V cones are 
integrated fully in a tetrachromatic color 
system as suggested by behavioral studies19 
and by the fact that UV/V cones contrib-
ute their inputs to color coding ganglion 
cells projecting to the brain in vertebrates 
ranging from turtles20 to mammals.21 Two 
possible reasons for expressing Cry1a in 
the UV/V cones come to mind: first, these 
cones possess transparent oil droplets22,23 
that allow the short wavelengths activat-
ing the cryptochrome24,25 to reach the 
outer segments, while the other cones with 
opsins tuned to longer wavelengths have 
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receptors) should be helpful to allow a sep-
aration of the two types of input because 
changes in the visual signal should be 
synchronous, whereas the magnetic signal 
occurs only in the UV-cones. Such cal-
culations could already be performed at 
the retinal level and be transferred to the 
brain by color-opponent ganglion cells. 
At least in the turtle retina, three types of 
color-opponent ganglion cells have been 
described reacting to UV/V stimuli with 
excitation and to blue stimuli with inhibi-
tion or vice versa.20 Too strong asymmetry 
of activation by the visual stimulus, how-
ever, could hamper such a comparison.

Separation at Higher  
Processing Levels

Separating the two types of input could 
also take place at a higher processing level. 
Within the brain, the first candidates for 
processing of complete retinal images, 
as needed for extraction of the magnetic 
information, would be areas containing 
a topographic retinal projection. Two 
such retinotopic maps have recently been 
described in reference 34, one within the 
optic tectum, the first station of the tec-
tofugal visual system, and another one 
within the visual Wulst, the telencephalic 
station of the thalamofugal visual system. 
For both these areas, there are indications 
for an involvement in the reception of 
magnetic directional information: early 
electrophysiological recordings showed 
responses to changes in the direction of 
the magnetic field,35,36 and a subdivision 
of the Wulst, ‘Cluster N’, which is most 
probably identical with the area which 
processes visual information,37 is activated 
during magnetic orientation.33,37,38

In principle, birds could extract mag-
netic information from neuronal maps 
using static images as well as movement 
information. Processes based on the static 
image could use the different composition 
of the activation patterns, i.e., the differ-
ent spatial frequency distributions of the 
visual image and of the magnetic field 
input. While the visual image contains 
a wide range of spatial frequencies, with 
high and medium frequencies, e.g., strong 
local contrasts and sharp edges, magnetic 
information is characterized by low spa-
tial frequencies, with smooth and gradual 

cannot be considered as separate process-
ing units specialized for the perception of 
magnetic directional information. Instead, 
in the course of further processing, the 
two components of the combined signal 
must be separated to obtain the respective 
information. This has been considered a 
problem,33 leading to speculations that 
the activation by bright daylight might 
override or mask the magnetic compass 
information. It has been suggested that 
the radical pair mechanism in night-
migrating passerines might be a special 
development of that group, with a second 
mechanism existing for magnetoreception 
during the day. This, however, appears to 
be rather unlikely. In directional train-
ing tests during daytime, radio frequency 
fields disrupt magnetic compass orienta-
tion in chickens7 and zebra finches,8 indi-
cating the same radical-pair processes as 
in night-migrating passerines.6,7 Also, the 
location of cryptochrome along the disks 
of the UV/V cones in chickens and rob-
ins is very similar and did not vary in the 
course of the day.17 These findings suggest 
the same primary processes in day-active 
and night-migrating birds. Hence birds 
must have mechanisms to separate visual 
and magnetic input, either directly at the 
retinal level or more centrally.

The idea of an extraction of the mag-
netic information already at the retinal 
level is attractive, and the retinal network 
as such is complex enough to allow any sort 
of speculation on potential mechanisms. 
The easiest way would be a comparison 
of the output of adjacent UV/V cones 
with and without cryptochrome, because 
in this case the visually induced activa-
tion of both cones should be identical. 
However, there is no evidence for a pairing 
of UV/V cones,26 and our study17 shows 
that Cry1a is present in every UV/V cone. 
Likewise, comparison with the β band of 
the other color cone pigments, which has a 
maximum at UV to V wavelengths, is not 
possible because these are most probably 
masked by colored oil droplets.22,23,30 The 
only possibility is a comparison between 
the activation of the UV/V cones and the 
blue cones, as the absorbance profiles of 
the two receptors overlap around 400 nm. 
Hence wavelengths in this range that acti-
vate both receptors to a certain degree (or 
a wavelength not activating any of the two 

colored oil droplets22,23 filtering out these 
wavelengths. Second, the UV/V cones are 
a low density population and comprise the 
smallest proportion of the cones, about 
10% depending on species.18,26,27 As the 
magnetic field-induced activation pattern 
has smooth and gradual transitions (see 
below), a low-density detector system is 
sufficient to detect these signals. Hence 
the evolutionary choice of the UV/V cones 
could have economic reasons. The rods 
would also fulfill the first criterion because 
they have no light-filtering oil droplet, but 
they would not be an economic alterna-
tive, because they comprise up to 40% of 
the photoreceptors even in chickens and 
other diurnal bird species;26,28,29 nocturnal 
birds have heavily rod-dominated retinae 
(e.g., up to 96% rods in different owls).30 
Furthermore, because of the high light 
sensitivity of rods, their response to light 
would possibly dominate any magnetic 
response too strongly.

The UV/V receptors in birds thus con-
tain two types of photopigments, namely 
the UV- or V-sensitive SWS1-opsin that is 
affected by light but not by the magnetic 
field, and additionally the cryptochrome 
that absorbs blue light31 and is modulated 
by its changing alignment with respect 
to the direction of the geomagnetic field. 
The level of activation of the UV/V cones 
therefore depends on the incident light 
falling on the UV-opsin as well as on the 
activation of the cryptochromes, i.e., it 
represents visual as well as magnetic infor-
mation. Behavioral data suggest that the 
reception of magnetic directions is largely 
independent of the activation of the UV/V 
opsin—it occurs under UV light that 
activates the UV opsin as well as under 
monochromatic green light that does not 
activate this opsin.32 There are no indica-
tions that the UV cones have two separate 
outputs for the opsin-induced and the 
cryptochrome-induced signals. Rather, on 
the neuronal level, the activation of the 
Cry1a molecules would be combined with 
that of the UV/V opsin to a single output 
of the UV/V sensitive cone.

Separating Visual  
and Magnetic Input

Since the UV cones are integrated in the 
avian tetrachromatic color system,19,20 they 
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In summary, the double function of 
the UV cones as receptors for visual and 
magnetic information does not seem to be 
a problem: birds appear to have a variety 
of possibilities to separate the two types of 
input. In particular during straight flight, 
optic flow might be helpful with interpret-
ing magnetic input and deriving compass 
information.
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